sss视频
  • 首页
  • 户外 捆绑
  • 户外 sex
  • 伪娘 户外
  • 户外 品牌
  • 婷儿 户外
  • 妖媚婷儿 户外
  • 户外 捆绑你的位置:sss视频 > 户外 捆绑 > 肛交 哭 尺度两期DID案例一(无缺历程Stata达成以及数据):长护险与医疗用渡过甚价值
    肛交 哭 尺度两期DID案例一(无缺历程Stata达成以及数据):长护险与医疗用渡过甚价值
    发布日期:2025-03-25 11:45    点击次数:119

    肛交 哭 尺度两期DID案例一(无缺历程Stata达成以及数据):长护险与医疗用渡过甚价值

    一、尺度两期DID表面讲明

    DID专题一:尺度两期DID研究框架基础详解肛交 哭

    未来和后天分别更新python和R的达成代码。

    二、计策布景2.1计策发布及计策演变过程

    2012年7月,青岛发布《对于建设始终医疗护士保障轨制的观点(试行)》,其中律例在城镇驱动践诺长护险轨制,到2015年将这长护险轨制扩展到农村地区。这里咱们不错精通到两个关键时间点2012年和2015年。

    2.2青岛长护险轨制试点的参保对象

    插足城镇员工医疗保障、城乡住户医疗保障的参保东谈主融合纳入长护险。

    2.3享受长护险待遇的尺度参保东谈主因老迈、疾病、伤残等原因常年卧床已达或预期达到6个月以上病情基本庄重,按照《日常生存才气评定量表》评定低于60分2.4长护险轨制提供的待遇2.4.1 四种照护医疗专护:二级及以上入院定点医疗机构医疗专护病房为参保东谈主提供始终24小时流通医疗就业护士院医疗护士(院护):医养团结的护士就业机构为入住本机构的参保东谈主提供24小时流通医疗护士就业居家医疗就业(家护):护士就业机构派医护东谈主员到参保员工家中提供医疗护士就业社区巡护(巡护),护士就业机构(含村卫生室)派医护东谈主员到参保东谈主家中提供就业2.4.2 保障相宜律例的医疗护士用度三、数据讲明

    原论文选拔了2011、2013、2015三期的探听数据。咱们本次主要先容尺度两期DID的应用,是以只选拔2011和2015两期的数据。数据样本为45岁以上中老年东谈主家庭和个东谈主,具体内容包含家庭特征、东谈主口统计学特征、个东谈主和家庭经济景色、健康景色、医疗就业应用过甚破耗、生存风俗、疾病史等。

    四、模子建设4.1 驱散组和计策实行前后

    在DID才气的模子建设中,最为蹙迫的两个变量建设是:

    分清实验组和驱散组,即受到计策干扰的样本和不受计策影响的样本,依据计策布景可知,实验组样本为探听数据中的青岛的城镇中老年住户,驱散组为探听数据中的其它城市的城镇住户; 

    分清计策实施的先后。依据计策布景可知,计策在2012年驱动实行,由于本次咱们仅先容尺度两期DID才气的应用,因此2011年数据为长护险轨制实行前的样本数据,2015年探听数据为轨制实行之后的样本数据。

    4.2 恶果变量

    恶果变量本文依据论文的建设,包含以下方针:畴前一个月门诊破钞总量、畴前一个月门诊就诊次数、畴前一年入院破钞总数、畴前一年入院次数。

    4.3 驱散变量

    雷同参照论文,咱们计议了年齿、性别、婚配景色等东谈主口学变量;教会、家庭东谈主均收入等社会经济地位变量;自评健康、慢性病患病数目等健康水平变量。况且通过驱散。

    图片

    最终得到以下回想模子:

    式(1)中,bi暗示城市,暗示样本个体,暗示时间,为因变量具体回想中法式替换为表1中的四个因变量,为驱散变量,为赶快扰动项,为中枢回想参数,暗示在青岛城市住户中实施的长护险轨制的计策效应。

    五、应用stata达成数据分析

    ==取得分析数据良善公众号并复兴:长护险DID分析==

    5.1 装配外部号令包

    ttable用于分组T熟悉,winsor2用于缩尾约略截尾,logout用于输出统计恶果到word/excel,sum2docx用于输出描述性统计分析到word,diff用于DID分析,reghdfe用于高维固定效应回想,ftools是基于mata谈话的套件(平常运行reghdfe所需的外部包)。

    ssc install ttable2 , replace ssc install winsor2 , replace ssc install logout , replace ssc install sum2docx , replace ssc install diff , replacessc install reghdfe , replace ssc install ftools, replace

    以上的每一瞥code运行收效后会袒露如下内容(****法式为ttable2 winsor2 logout sum2docx)

    checking **** consistency and verifying not already installed...all files already exist and are up to date.

    在国内偶然运行很慢约略装配不收效,这是不错先运行以下代码:

    ssc install cnssc , replace

    之后再运行以下代码:

    cnssc install ttable2 , replace cnssc install winsor2 , replace cnssc install logout , replace cnssc install sum2docx , replacecnssc install diff , replace cnssc install ftools, replace
    5.2 描述性统计分析

    领先律例责任旅途(举例数据位于E盘project文献夹,分析恶果也聚会放在此文献夹),导入数据并对数据进行缩尾处理(去除顶点值)。

    cd 'E:\project' //设定责任旅途use final.dta , clear //导入dta花样数据foreach var in cost_clinic time_clinic cost_hos time_hos Post Treat DID Rural Age Gender married Edu_Group fainc lnfainc chro gh pain cesd{ drop if `var'==.} //删除轻易变量有缺失值的样本winsor2 cost_clinic time_clinic cost_hos time_hos Age chro Edu_Group fainc lnfainc gh cesd,cut(1 99) replace //对通盘流通变量以及多值定序分类变量进行1%和99%的缩尾处理

    删除任一有缺失值的样本是选拔foreach轮回达成,'vat'暗示轮回指针,'in'到'{’之间的变量暗示需要参与轮回的变量,'{}’之中是进行样本删除的代码。

    winsor2号令后是需要进行winsorize处理的变量;','后(option部分),cut(1 99)暗示缩尾的节点为1%分位数和99%分位数,小于1%分位数的值沿路更正为1%分位数的值,其含义为变量中大于99%分位数的值沿路更正为99%分位数的值。replace暗示缩尾后的变量替换原变量,不加replace暗示生成的winsorize处理后的变量其变量名带有后缀'_w'。

    5.2.1 进行全样本的描述性统计分析
    tabstat cost_clinic time_clinic cost_hos time_hos Post Treat DID Rural Age Gender married Edu_Group fainc lnfainc chro gh pain cesd,s(n mean sd cv min median  max k sk) c(s)
    tabstat暗示对紧跟自后的一系列变量进行描述性统计分析,','后(option部分)的's()'中表述需要盘算推算的统计量,'c(s)'暗示统计量按例摆放(若为'c(v)'则暗示按列摆放的为变量,即底下的恶果将进行转置)。

    得到描述性统计恶果:

        Variable |         N      Mean        SD        CV       Min       p50       Max  Kurtosis  Skewness-------------+------------------------------------------------------------------------------------------ cost_clinic |     29391  120.0818  518.2586   4.31588         0         0      4000  41.89921  6.052325 time_clinic |     29391  .3545303  .9212584  2.598532         0         0         5  14.01949  3.235013    cost_hos |     29391  725.6395  3311.203  4.563151         0         0     25000  37.96861  5.737651    time_hos |     29391  .1069715  .3766619  3.521141         0         0         2  16.70562  3.728614        Post |     29391  .5180838  .4996814  .9644799         0         1         1  1.005239 -.0723824       Treat |     29391  .0038787  .0621597  16.02575         0         0         1  255.8197  15.96307         DID |     29391  .0022116   .046976  21.24111         0         0         1  450.1714  21.19367       Rural |     29391  .7937124  .4046463  .5098148         0         1         1  3.107502 -1.451724         Age |     29391  59.19077  9.369093  .1582864        45        58        83  2.485779  .4759141      Gender |     29391  .5103263  .4999019   .979573         0         1         1  1.001707  -.041314     married |     29391  .8776156  .3277348  .3734378         0         1         1  6.310427 -2.304436   Edu_Group |     29391  2.938689  1.338308    .45541         1         3         5  1.873939  -.112724       fainc |     29391  12178.41  15801.98  1.297541         1      6766  93714.33  11.91505  2.663377     lnfainc |     29391  8.155491  2.527126  .3098681  .6931472  8.819813  11.44802  6.145089 -1.879134        chro |     29391  1.488483  1.456642  .9786083         0         1         6  3.607613  1.028399          gh |     29391  2.156204  .5803246  .2691418         1         2         3  2.774461 -.0277315        pain |     29391  .2998537  .4582015  1.528083         0         0         1  1.763233  .8736319        cesd |     29391  8.079378  6.284093  .7777941         0         7        26  3.078649  .8498227--------------------------------------------------------------------------------------------------------

    第一种导出才气,应用'logout':

    接下来将描述性统计分析恶果输出到word(table1c_descrip_all.rtf):'logout'为导出统计表格的号令,主体部分在','后(option部分)。'save()'部分指定统计表格导出的文献夹旅途和文献名(不加文献旅途则导出到责任旅途),'word'暗示导出文献花样为rtf,'replace'若导出的文献夹已存在同名文献则替换已存在的文献;':'后为需要导出的表格,咱们这里需若是描述性统计分析的号令,因此导出的表格是描述性统计分析恶果。

    logout,save(table1c_descrip_all) word replace:tabstat cost_clinic time_clinic cost_hos time_hos Post Treat DID Rural Age Gender married Edu_Group fainc lnfainc chro gh pain cesd,s(n mean sd cv min median max k sk) c(s)

    第二种输出才气,使用sum2docx号令:

    'sum2docx'与'logout'不同,不会在stata的恶果窗口生成描述性统计分陈说表,而是径直将恶果导出到word。需要进行描述性统计分析的变量放在'sum2docx'之后,'using'之后输入导出的文献夹旅途和文献名,'stats()'中指定需要输出的统计量,replace的含义与上头疏浚。

    sum2docx cost_clinic time_clinic cost_hos time_hos Post Treat DID Rural Age Gender married Edu_Group fainc lnfainc chro gh pain cesd using 'table1c_descrip_all.docx', replace stats(N mean sd min p25 median p75 max skewness kurtosis)
    5.2.2 进行分组对比分析

    描述性统计分析是对各变量的溜达情况,样本间相反情况的一个总体讲明,咱们需要进一步熟悉驱散组和实验组在计策实行前后的各变量进行对比。

    驱散组长护险轨制实行前后的恶果变量对比:

    'ttable2'为进行t熟悉的号令,后紧跟需要进行t熟悉的变量。'if Treat==0'暗示仅对驱散组样本进行T熟悉分析。逗号后的'by(Post)'暗示按照计策实行前后进行对比熟悉,'format'律例均值和均值相反的数值花样为保留少许点后4位少许。

    ttable2 cost_clinic time_clinic cost_hos time_hos Age Gender married Edu_Group fainc chro gh pain cesd if Treat==0 , by(Post) format(%9.4f)

    下表为T熟悉恶果表,' G(0)'和'Mean1'分别暗示计策实施前的样本量和均值,' G(1)'和'Mean2'分别暗示计策实施后的样本量和均值,'MeanDiff'为均值相反。'*'、'**'和'***'分别暗示在0.1、0.05、0.01的水平通过权贵性熟悉。

    --------------------------------------------------------------------------Variables   G1(0)            Mean1     G2(1)          Mean2      MeanDiff--------------------------------------------------------------------------cost_clinic   14115          92.5326      15162      146.1172   -53.5846***time_clinic   14115           0.3544      15162        0.3561    -0.0016cost_hos      14115         464.8485      15162      962.3160  -497.4675***time_hos      14115           0.0808      15162        0.1308    -0.0500***Age           14115          58.7795      15162       59.5625    -0.7830***Gender        14115           0.5173      15162        0.5036     0.0136**married       14115           0.8748      15162        0.8804    -0.0055Edu_Group     14115           2.7601      15162        3.1027    -0.3426***fainc         14115         1.22e+04      15162      1.20e+04   138.3820chro          14115           1.3852      15162        1.5863    -0.2011***gh            14115           2.2072      15162        2.1103     0.0969***pain          14115           0.3170      15162        0.2843     0.0326***cesd          14115           8.3514      15162        7.8504     0.5010***--------------------------------------------------------------------------

    从上表可知,在计策实施之后,驱散组样本的门诊破耗(cost_clinic)、入院破耗(time_clinic)、入院次数(time_hos)均有权贵的加多,分别加多了53.5846元、497.467元和0.05次。

    驱散组计策前后对比恶果输出到word,文献名为table1b_descrip_treat:语法讲明与前文一致,不再论说。

    logout, save(table1b_descrip_treat) word replace:ttable2 cost_clinic time_clinic cost_hos time_hos Age Gender married Edu_Group fainc chro gh pain cesd if Treat==0 , by(Post) format(%9.4f)

    实验组(青岛市)长护险轨制实行前后的恶果变量对比:

    ttable2 cost_clinic time_clinic cost_hos time_hos Age Gender married Edu_Group fainc chro gh pain cesd if Treat==1 , by(Post) format(%9.4f)
    --------------------------------------------------------------------------Variables G1(0) Mean1 G2(1) Mean2 MeanDiff--------------------------------------------------------------------------cost_clinic 49 152.0000 65 5.3846 146.6154*time_clinic 49 0.3061 65 0.0462 0.2600**cost_hos 49 2067.3469 65 1138.4615 928.8854time_hos 49 0.2041 65 0.1538 0.0502Age 49 61.0408 65 60.3846 0.6562Gender 49 0.5510 65 0.5385 0.0126married 49 0.8367 65 0.8769 -0.0402Edu_Group 49 2.9592 65 3.4462 -0.4870**fainc 49 4.81e+04 65 1.97e+04 2.83e+04***chro 49 1.1020 65 1.4000 -0.2980gh 49 2.0000 65 1.9231 0.0769pain 49 0.4286 65 0.1077 0.3209***cesd 49 4.6939 65 4.9692 -0.2754--------------------------------------------------------------------------

    在计策之后,实验组的门诊破耗(cost_clinic)和门诊次数(time_clinic)在计策前后存在权贵的相反(0.05和0.1的权贵性水平)。在计策践诺后的2015年比拟于2011,门诊破耗镌汰了146.615元,门诊次数镌汰了0.26次。入院破耗(cost_hos)和入院次数(time_hos)并未发生权贵性的变化。

    概述对比来看,驱散组样本的门诊破耗(cost_clinic)、门诊次数(time_clinic)、入院破耗(time_clinic)、入院次数(time_hos)比拟于计策践诺前均有不同进度的加多,而实验组在计策践诺后均有不同进度的着落。但咱们仍然不行决然的作念出长护险轨制的践诺是这一餍足的原因,需要尽可能放手其它要素的影响才能得到相对简直的恶果。

    实验组计策前后对比恶果输出到word文献名为table1a_descrip_control

    logout, save(table1a_descrip_control) word replace:ttable2 cost_clinic time_clinic cost_hos time_hos Age Gender married Edu_Group fainc chro gh pain cesd if Treat==1 , by(Post) format(%9.4f)
    5.3基准回想分析

    基准回想咱们共享4种不同的号令(regress,reghdfe,diff,didregress)。regress为stata自带的线性回想号令,reghdfe和diff为需要装配的外部号令,didregress为stata17过甚以上新增的用于did分析的官方号令。

    5.3.1选拔regress号令

    回想分析号令:'reg'和'regress'号令的缩写,自后的法式为恶果变量(被解说变量),中枢解说变量(因变量),驱散变量。'vce(cluster city)'暗示选拔在城市层面的稳妥尺度误。'est store m*'暗示将上一瞥的回想恶果储存在内存中,定名为'm*'。

    reg cost_clinic DID Post Treat Rural Age Gender married i.Edu_Group lnfainc chro gh pain cesd , vce(cluster city)est store m1 reg time_clinic DID Post Treat Rural Age Gender married i.Edu_Group lnfainc chro gh pain cesd , vce(cluster city)est store m2reg cost_hos DID Post Treat Rural Age Gender married i.Edu_Group lnfainc chro gh pain cesd , vce(cluster city)est store m3reg time_hos DID Post Treat Rural Age Gender married i.Edu_Group lnfainc chro gh pain cesd , vce(cluster city)est store m4

    回想恶果聚会陈说在恶果窗口:esttab后输入需要聚会陈说的回想恶果名,nogap暗示陈说恶果不留空行,compress暗示压缩列与列之间的空间。'ar2'和'r2'是指定回报R方和调节R方的选项,'scalar(N)'指定回报样本量,t指定回报T统计值而非尺度误,'star(* 0.1 ** 0.05 *** 0.01)'指定权贵性标注神气为:p值小于0.1标注“*”,p值小于0.05标注“**”,p值小于0.01标注“***”,'mtitle()'指定各模子的标题。

    esttab m1 m2 m3 m4 ,replace nogap compress r2 ar2 scalar(N ) t star(* 0.1 ** 0.05 *** 0.01) mtitle('cost_clinic' 'time_clinic' 'cost_hos' 'time_hos')

    恶果如下:

    -------------------------------------------------------------- (1) (2) (3) (4) cost_clinic time_clinic cost_hos time_hos --------------------------------------------------------------DID -199.6*** -0.239*** -1471.3*** -0.103*** (-25.05) (-16.30) (-30.30) (-15.76) Post 55.14*** 0.0118 493.7*** 0.0495*** (7.44) (0.91) (11.83) (9.19) Treat 84.17*** 0.00649 1774.0*** 0.148*** (12.18) (0.35) (45.34) (27.94) Rural -30.53*** 0.0232 -485.3*** -0.0297*** (-3.08) (1.04) (-7.94) (-4.42) Age 0.0715 -0.000176 20.27*** 0.00260*** (0.15) (-0.21) (6.15) (8.25) Gender 6.256 0.0481*** -128.6*** -0.0132*** (0.99) (3.81) (-3.06) (-2.66) married 7.620 0.0183 118.6 0.00458 (0.73) (1.00) (1.63) (0.53) 1.Edu_Gr~p 0 0 0 0 (.) (.) (.) (.) 2.Edu_Gr~p 12.52 0.0323 119.7** 0.0132* (1.29) (1.10) (2.02) (1.72) 3.Edu_Gr~p 25.24** 0.0148 129.8** 0.00525 (2.56) (0.62) (2.41) (0.74) 4.Edu_Gr~p 37.24*** 0.0116 258.9*** 0.0219*** (3.19) (0.48) (4.10) (2.74) 5.Edu_Gr~p 43.91*** 0.0191 212.3** 0.0174* (3.41) (0.70) (2.46) (1.72) lnfainc 4.152*** 0.00495** 15.68** 0.00146* (2.75) (2.00) (2.01) (1.69) chro 34.83*** 0.0795*** 236.4*** 0.0374*** (9.73) (11.36) (10.60) (13.98) gh 82.58*** 0.161*** 575.4*** 0.0748*** (11.45) (12.26) (11.87) (14.47) pain 29.26*** 0.132*** -5.509 0.00982 (3.53) (7.30) (-0.09) (1.48) cesd 2.495*** 0.00670*** 6.527 0.00130** (3.64) (4.91) (1.53) (2.47) _cons -214.4*** -0.313*** -2299.1*** -0.300*** (-4.93) (-4.20) (-7.60) (-9.65) --------------------------------------------------------------N 29391 29391 29391 29391 R-sq 0.037 0.064 0.047 0.067 adj. R-sq 0.037 0.063 0.046 0.067 --------------------------------------------------------------t statistics in parentheses* p<0.1, ** p<0.05, *** p<0.01

    上表回报了基准回想的恶果,咱们主要良善DID的测度统统。DID的测度统统在1%的水平通过权贵性熟悉。长护险轨制在青岛实行后,实验组的门诊用度平均镌汰了199.6元,去门诊的次数平均着落了0.239次,入院破耗平均镌汰了1471.3元,入院次数平均镌汰了0.103次。

    基准回想恶果输出到word文献,table2_basireg.rtf: 若要将恶果输出到word而不是在恶果窗口回想,只需要在聚会陈说号令中的逗号前加上'using'和数据旅途,以及输出的文献名,如下所示。

    esttab m1 m2 m3 m4 using 'table2_basireg.rtf',replace nogap compress r2 ar2 scalar(N ) t star(* 0.1 ** 0.05 *** 0.01) mtitle('月门诊用度' '月门诊次数' '年入院用度' '年入院次数')
    5.3.2选拔外部号令reghdfe

    'reghdfe'是用于高维固定效应回想的号令,在此处,与regress号令惟一的区别是需要加上'noabsorb'选项来讲明回想不需要驱散任何固定效应。

    reghdfe cost_clinic DID Post Treat Rural Age Gender married i.Edu_Group lnfainc chro gh pain cesd , vce(cluster city) noabsorbest store m1 reghdfe time_clinic DID Post Treat Rural Age Gender married i.Edu_Group lnfainc chro gh pain cesd , vce(cluster city) noabsorbest store m2reghdfe cost_hos DID Post Treat Rural Age Gender married i.Edu_Group lnfainc chro gh pain cesd , vce(cluster city) noabsorbest store m3reghdfe time_hos DID Post Treat Rural Age Gender married i.Edu_Group lnfainc chro gh pain cesd , vce(cluster city) noabsorbest store m4

    回想恶果聚会陈说在恶果窗口:

    esttab m1 m2 m3 m4 ,replace nogap compress r2 ar2 scalar(N ) t star(* 0.1 ** 0.05 *** 0.01) mtitle('cost_clinic' 'time_clinic' 'cost_hos' 'time_hos')

    恶果如下:

    -------------------------------------------------------------- (1) (2) (3) (4) cost_clinic time_clinic cost_hos time_hos --------------------------------------------------------------DID -199.6*** -0.239*** -1471.3*** -0.103*** (-25.05) (-16.30) (-30.30) (-15.76) Post 55.14*** 0.0118 493.7*** 0.0495*** (7.44) (0.91) (11.83) (9.19) Treat 84.17*** 0.00649 1774.0*** 0.148*** (12.18) (0.35) (45.34) (27.94) Rural -30.53*** 0.0232 -485.3*** -0.0297*** (-3.08) (1.04) (-7.94) (-4.42) Age 0.0715 -0.000176 20.27*** 0.00260*** (0.15) (-0.21) (6.15) (8.25) Gender 6.256 0.0481*** -128.6*** -0.0132*** (0.99) (3.81) (-3.06) (-2.66) married 7.620 0.0183 118.6 0.00458 (0.73) (1.00) (1.63) (0.53) 1.Edu_Gr~p 0 0 0 0 (.) (.) (.) (.) 2.Edu_Gr~p 12.52 0.0323 119.7** 0.0132* (1.29) (1.10) (2.02) (1.72) 3.Edu_Gr~p 25.24** 0.0148 129.8** 0.00525 (2.56) (0.62) (2.41) (0.74) 4.Edu_Gr~p 37.24*** 0.0116 258.9*** 0.0219*** (3.19) (0.48) (4.10) (2.74) 5.Edu_Gr~p 43.91*** 0.0191 212.3** 0.0174* (3.41) (0.70) (2.46) (1.72) lnfainc 4.152*** 0.00495** 15.68** 0.00146* (2.75) (2.00) (2.01) (1.69) chro 34.83*** 0.0795*** 236.4*** 0.0374*** (9.73) (11.36) (10.60) (13.98) gh 82.58*** 0.161*** 575.4*** 0.0748*** (11.45) (12.26) (11.87) (14.47) pain 29.26*** 0.132*** -5.509 0.00982 (3.53) (7.30) (-0.09) (1.48) cesd 2.495*** 0.00670*** 6.527 0.00130** (3.64) (4.91) (1.53) (2.47) _cons -214.4*** -0.313*** -2299.1*** -0.300*** (-4.93) (-4.20) (-7.60) (-9.65) --------------------------------------------------------------N 29391 29391 29391 29391 R-sq 0.037 0.064 0.047 0.067 adj. R-sq 0.037 0.063 0.046 0.067 --------------------------------------------------------------t statistics in parentheses* p<0.1, ** p<0.05, *** p<0.01

    基准回想恶果输出到word文献,table2_basireg.rtf:

    esttab m1 m2 m3 m4 using 'table2_basireg.rtf',replace nogap compress r2 ar2 scalar(N ) t star(* 0.1 ** 0.05 *** 0.01) mtitle('月门诊用度' '月门诊次数' '年入院用度' '年入院次数')
    5.3.3选拔外部号令diff

    'diff'是广宽用于did分析的外部号令中的一个,由于diff在计议驱散变量时不行输入factor variable(上文中的i.Edu_Group),因此需要将Edu_Group更动为dummy variables,因此需要先运行'tab Edu_Group , gen(Edu)'。

    'diff'的使用才气是将恶果变量放在号令之后,在选项部分指定实验组和驱散组的识别变量和计策实行前后的识别变量以及驱散变量。't()'指定分组变量,'p()'指定计策时间前后的分散变量,'cv()'指定驱散变量,'cluster()'暗示使用聚类尺度误,若不加该选项等于不使用聚类尺度误,report指需要回报无缺的回想恶果。

    先以对cost_clinic(门诊破耗)的分析为例:

    tab Edu_Group , gen(Edu) //生成最高学历的假造变量diff cost_clinic, t(Treat) p(Post) cov(Rural Age Gender married Edu2 Edu3 Edu4 Edu5 lnfainc chro gh pain cesd) cluster(city) report

    在不加'report'选项下,'diff'号令分别回报了在计议驱散变量的情况下,在计策之前(Before)与之后(after)驱散组和实验组的恶果变量均值过甚之间的相反和权贵性熟悉,终末一瞥回报了双重差分的恶果,即前文中的DID变量的测度参数。借助这个表,咱们不错更好的清醒平行趋势假定的蹙迫性,终末一瞥(Diff-on-Diff)的测度统统恰巧是计策实行之前驱散组与实验组的相反减去计策实行之前的相反,其差值能暗示计策效应的一个蹙迫假定是在计策莫得实行的情况下,计策后实验组和驱散组在恶果变量上的相反映该与计策实行之前不具有权贵的不同,即就算有不同亦然由赶快性产生的,如果统计熟悉讲明该“不同”具有统计上的趣味趣味,就不错合理推断该'不同'是由计策实行导致的。

    苍井空A级在线观看网站
    -------------------------------------------------------- Outcome var.   | cost_~c | S. Err. |   |t|   |  P>|t|----------------+---------+---------+---------+---------Before          |         |         |         |    Control      | -214.368|         |         |    Treated      | -130.195|         |         |    Diff (T-C)   | 84.173  | 6.913   | 12.18   | 0.000***After           |         |         |         |    Control      | -159.225|         |         |    Treated      | -274.620|         |         |    Diff (T-C)   | -115.395| 6.212   | 18.58   | 0.000***                |         |         |         | Diff-in-Diff    | -199.568| 7.967   | 25.05   | 0.000***--------------------------------------------------------

    雷同,选拔diff也不错将基准回想恶果汇总陈说:

    diff cost_clinic, t(Treat) p(Post) cov(Rural Age Gender married Edu2 Edu3 Edu4 Edu5 lnfainc chro gh pain cesd) cluster(city) reportest store m1diff time_clinic, t(Treat) p(Post) cov(Rural Age Gender married Edu2 Edu3 Edu4 Edu5 lnfainc chro gh pain cesd) cluster(city) est store m2diff cost_hos, t(Treat) p(Post) cov(Rural Age Gender married Edu2 Edu3 Edu4 Edu5 lnfainc chro gh pain cesd) cluster(city) est store m3diff time_hos, t(Treat) p(Post) cov(Rural Age Gender married Edu2 Edu3 Edu4 Edu5 lnfainc chro gh pain cesd) cluster(city) est store m4

    回想恶果聚会陈说在恶果窗口:

    esttab m1 m2 m3 m4 ,replace nogap compress r2 ar2 scalar(N ) t star(* 0.1 ** 0.05 *** 0.01) mtitle('cost_clinic' 'time_clinic' 'cost_hos' 'time_hos')

    恶果如下:'_diff'变量等于前文中的DID变量,回想恶果也与regress号令和reghdfe号令一致。

    -------------------------------------------------------------- (1) (2) (3) (4) cost_cl~c time_cl~c cost_hos time_hos --------------------------------------------------------------Post 55.14*** 0.0118 493.7*** 0.0495*** (7.44) (0.91) (11.83) (9.19) Treat 84.17*** 0.00649 1774.0*** 0.148*** (12.18) (0.35) (45.34) (27.94) _diff -199.6*** -0.239*** -1471.3*** -0.103*** (-25.05) (-16.30) (-30.30) (-15.76) Rural -30.53*** 0.0232 -485.3*** -0.0297*** (-3.08) (1.04) (-7.94) (-4.42) Age 0.0715 -0.000176 20.27*** 0.00260*** (0.15) (-0.21) (6.15) (8.25) Gender 6.256 0.0481*** -128.6*** -0.0132*** (0.99) (3.81) (-3.06) (-2.66) married 7.620 0.0183 118.6 0.00458 (0.73) (1.00) (1.63) (0.53) Edu2 12.52 0.0323 119.7** 0.0132* (1.29) (1.10) (2.02) (1.72) Edu3 25.24** 0.0148 129.8** 0.00525 (2.56) (0.62) (2.41) (0.74) Edu4 37.24*** 0.0116 258.9*** 0.0219*** (3.19) (0.48) (4.10) (2.74) Edu5 43.91*** 0.0191 212.3** 0.0174* (3.41) (0.70) (2.46) (1.72) lnfainc 4.152*** 0.00495** 15.68** 0.00146* (2.75) (2.00) (2.01) (1.69) chro 34.83*** 0.0795*** 236.4*** 0.0374*** (9.73) (11.36) (10.60) (13.98) gh 82.58*** 0.161*** 575.4*** 0.0748*** (11.45) (12.26) (11.87) (14.47) pain 29.26*** 0.132*** -5.509 0.00982 (3.53) (7.30) (-0.09) (1.48) cesd 2.495*** 0.00670*** 6.527 0.00130** (3.64) (4.91) (1.53) (2.47) _cons -214.4*** -0.313*** -2299.1*** -0.300*** (-4.93) (-4.20) (-7.60) (-9.65) --------------------------------------------------------------N 29391 29391 29391 29391 R-sq 0.037 0.064 0.047 0.067 adj. R-sq 0.037 0.063 0.046 0.067 --------------------------------------------------------------t statistics in parentheses* p<0.1, ** p<0.05, *** p<0.01

    导出到word的号令与前边一致。

    5.3.4选拔didregress(仅stata17及以上可用)

    'didregress'是stata17过甚以上版块才能使用的官方号令,在应用到两期尺度DID模子时其基本语法结构为:didregress (ovar omvarlist) (tvar) , group(groupvar) time(timevar) options

    'ovar'为恶果变量,'omvarlist'为一组协变量/驱散变量。'tvar'是用于暗示哪些不雅测受到计策的影响,需要精通的是这里识别的是不雅测,举例某属于青岛的个体A(长护险轨制在青岛2012践诺,属于实验组),在数据中会产生2011年和2015年两个不雅测,但唯有在长护险计策实行之后的2015年不雅测才会受到计策的影响。因此对于这个个体A,其在2011年的不雅测对应的'tvar'取0,对应2015年不雅测的'tvar'取值为0,在咱们的案例中,'tvar'等于DID。

    'groupvar'是用于识别个体属于实验组如故驱散组的dummy variable,上文中的个体A,无论辩论于其在2011年的不雅测如故在2015年的不雅测,'groupvar'齐应赋值为1,案例中的'Treat'等于'groupvar'。

    'timevar'可看作是用于识别计策发生时间的dummy varibale,对应咱们建设的'Post'。'option'代表其他一系列可选要求的建设,'vce(cluster city)'的含义与前文一致,aequations在需要回报协变量/驱散变量的测度恶果时使用。需要精通得是,'didregress'雷同不撑抓factor variable的使用,同期不会回报'Post'的测度统统。

    didregress (cost_clinic Rural Age Gender married Edu2 Edu3 Edu4 Edu5 lnfainc chro gh pain cesd) (DID),  group(Treat) time(Post) vce(cluster city) aequationsest store m1didregress (time_clinic Rural Age Gender married Edu2 Edu3 Edu4 Edu5 lnfainc chro gh pain cesd) (DID),  group(Treat) time(Post) vce(cluster city) aequationsest store m2didregress (cost_hos Rural Age Gender married Edu2 Edu3 Edu4 Edu5 lnfainc chro gh pain cesd) (DID),  group(Treat) time(Post) vce(cluster city) aequationsest store m3didregress (time_hos Rural Age Gender married Edu2 Edu3 Edu4 Edu5 lnfainc chro gh pain cesd) (DID),  group(Treat) time(Post) vce(cluster city) aequationsest store m4

    回想恶果聚会陈说在恶果窗口:

    esttab m1 m2 m3 m4 ,replace nogap compress r2 ar2 scalar(N ) t star(* 0.1 ** 0.05 *** 0.01) mtitle('cost_clinic' 'time_clinic' 'cost_hos' 'time_hos')

    恶果如下:

    --------------------------------------------------------------                 (1)          (2)          (3)          (4)              cost_cl~c    time_cl~c     cost_hos     time_hos   --------------------------------------------------------------ATET                                                          r1vs0.DID     -199.6***    -0.239***   -1471.3***    -0.103***            (-25.05)     (-16.30)     (-30.30)     (-15.76)   --------------------------------------------------------------Controls                                                      Rural         -30.53***    0.0232       -485.3***   -0.0297***             (-3.08)       (1.04)      (-7.94)      (-4.42)   Age           0.0715    -0.000176        20.27***   0.00260***              (0.15)      (-0.21)       (6.15)       (8.25)   Gender         6.256       0.0481***    -128.6***   -0.0132***              (0.99)       (3.81)      (-3.06)      (-2.66)   married        7.620       0.0183        118.6      0.00458                 (0.73)       (1.00)       (1.63)       (0.53)   Edu2           12.52       0.0323        119.7**     0.0132*                (1.29)       (1.10)       (2.02)       (1.72)   Edu3           25.24**     0.0148        129.8**    0.00525                 (2.56)       (0.62)       (2.41)       (0.74)   Edu4           37.24***    0.0116        258.9***    0.0219***              (3.19)       (0.48)       (4.10)       (2.74)   Edu5           43.91***    0.0191        212.3**     0.0174*                (3.41)       (0.70)       (2.46)       (1.72)   lnfainc        4.152***   0.00495**      15.68**    0.00146*                (2.75)       (2.00)       (2.01)       (1.69)   chro           34.83***    0.0795***     236.4***    0.0374***              (9.73)      (11.36)      (10.60)      (13.98)   gh             82.58***     0.161***     575.4***    0.0748***             (11.45)      (12.26)      (11.87)      (14.47)   pain           29.26***     0.132***    -5.509      0.00982                 (3.53)       (7.30)      (-0.09)       (1.48)   cesd           2.495***   0.00670***     6.527      0.00130**               (3.64)       (4.91)       (1.53)       (2.47)   0.Post             0            0            0            0                    (.)          (.)          (.)          (.)   1.Post         55.14***    0.0118        493.7***    0.0495***              (7.44)       (0.91)      (11.83)       (9.19)   _cons         -214.0***    -0.313***   -2292.3***    -0.299***             (-4.93)      (-4.20)      (-7.58)      (-9.63)   --------------------------------------------------------------N              29391        29391        29391        29391   R-sq                                                          adj. R-sq                                                     --------------------------------------------------------------
    5.4 进一步分析

    基准回想分析是否仍然存在盘曲,这是咱们需要计议的问题。通过总体数据的描述性统计分析,咱们不错明晰看到,4个恶果变量的最小值和中位数均为0,峰渡过高,偏度辩认0,讲明4个恶果变量的取值大部分为最低值0,同期0到高值之间不存在彰着的过渡区间。这就引出一个关键问题,咱们所计议的协变量与因变量和这4个恶果变量是否可能不是线性关联,约略说线性关联不行很准确的解说协变量与因变量和这4个恶果变量之间的关联,可能低谷长护险的计策效应。

    再行回到4个恶果变量的描述性分析:

    tabstat cost_clinic time_clinic cost_hos time_hos,s(n mean sd min p25 p50 p75 max k sk) c(v)

    检讨恶果:

       Stats |  cost_c~c  time_c~c  cost_hos  time_hos---------+----------------------------------------       N |     29391     29391     29391     29391    Mean |  120.0818  .3545303  725.6395  .1069715      SD |  518.2586  .9212584  3311.203  .3766619     Min |         0         0         0         0     p25 |         0         0         0         0     p50 |         0         0         0         0     p75 |         0         0         0         0     Max |      4000         5     25000         2Kurtosis |  41.89921  14.01949  37.96861  16.70562Skewness |  6.052325  3.235013  5.737651  3.728614--------------------------------------------------

    咱们也不错通过画出核密度图来直不雅讲明。

    'kdensity'是用于画核密度图的号令,ylabel用于指定坐标轴的标签,legend用于指定图例,graphregion用于指定区域热诚。'graph save'将图保存为gph花样,'graph combine'用于将gph花样的图并吞为一张图,'graph export'用于将图导出为其他花样。

    kdensity cost_clinic ,ylabel(#4, format(%9.4f)) legend(off) graphregion(fcolor(white) ifcolor(white))graph save 'cost_clinic.gph' ,replacekdensity time_clinic ,ylabel(, format(%9.1f)) legend(off) graphregion(fcolor(white) ifcolor(white))graph save 'time_clinic.gph' ,replacekdensity cost_hos ,ylabel(#3, format(%9.4f)) legend(off) graphregion(fcolor(white) ifcolor(white))graph save 'cost_hos.gph' ,replacekdensity time_hos ,ylabel(, format(%9.0f)) legend(off) graphregion(fcolor(white) ifcolor(white))graph save 'time_hos.gph' ,replacegraph combine 'cost_clinic.gph' 'time_clinic.gph' 'cost_hos.gph' 'time_hos.gph' ,row(2)graph export 'figure1_kernal.png' ,width(1920) height(1500) replace

    图片

    Fig 1: 恶果变量核密度图5.4.1 进行tobit回想

    若咱们将恶果变量的这种数据溜达特征浅薄的看作一种截尾溜达。即浅薄地合计唯有体格状态的祸患进度达到一定阈值,才会去门诊,恶果变量存在存在'负值',但负值由于客不雅情况齐取值为0了。约略说,在门诊之下,以及门诊和入院之间,若存在其它愈加具有流通性的过渡医疗就业,那么,咱们的恶果变量将接近正态溜达约略T溜达。(本体上,这么的假定不一定具有合感性和试验性,因为对试验作念出了太大的联想。以后有契机咱们不错成心出专题接头这么的问题,在此处作为学习的案例,不错姑且一试。) 

    因此,咱们现存的数据的溜达只是是正态溜达约略某种对称溜达的右半部分,因此,不错选拔tobit模子,对于tobit,在此处不错浅薄清醒为选拔部分线性的分段方程进行拟合。以下为tobit回想的代码,'tobit'是回想的领导,'ll(0)'是讲明数据不才限为0处产生了截尾。

    tobit cost_clinic DID Post Treat Age Gender married i.Edu_Group lnfainc chro gh pain cesd  , vce(cluster city) ll(0)est store m1 tobit time_clinic DID Post Treat Age Gender married i.Edu_Group lnfainc chro gh pain cesd  , vce(cluster city) ll(0)est store m2tobit cost_hos DID Post Treat Age Gender married i.Edu_Group lnfainc chro gh pain cesd  , vce(cluster city) ll(0)est store m3tobit time_hos DID Post Treat Age Gender married i.Edu_Group lnfainc chro gh pain cesd , vce(cluster city) ll(0)est store m4esttab m1 m2 m3 m4 ,replace nogap compress scalar(N r2_p) t star(* 0.1 ** 0.05 *** 0.01) mtitle('cost_clinic' 'time_clinic' 'cost_hos' 'time_hos')

    得到tobit回想恶果:咱们不错看到测度恶果袒露,在长护险计策实行后,实验组的门诊用度平均镌汰了1844.4元,去门诊的次数平均着落了3.157次,入院破耗平均镌汰了8437.5元,入院次数平均镌汰了0.848次,tobit测度出的长护险效应(平均旯旮效应)如故很接近各自的最大值,这在很猛进度上抵触了学问,不错怀疑tobit测度恶果夸大了长护险的计策效应。

    -------------------------------------------------------------- (1) (2) (3) (4) cost_cl~c time_cl~c cost_hos time_hos --------------------------------------------------------------main DID -1844.0*** -3.157*** -8437.5*** -0.848*** (-27.59) (-37.83) (-13.81) (-10.99) Post 138.1*** 0.0498 4056.8*** 0.460*** (3.99) (0.73) (8.25) (7.37) Treat 314.4*** 0.248*** 11949.1*** 1.313*** (6.88) (2.62) (20.36) (17.96) Age -1.295 -0.00248 247.3*** 0.0304*** (-0.61) (-0.60) (7.76) (8.57) Gender 99.75*** 0.252*** -897.3* -0.111* (3.18) (3.98) (-1.91) (-1.89) married 39.57 0.0716 475.3 0.0198 (0.92) (0.84) (0.75) (0.25) 1.Edu_Gr~p 0 0 0 0 (.) (.) (.) (.) 2.Edu_Gr~p 80.33 0.146 1466.4** 0.166* (1.49) (1.15) (2.05) (1.82) 3.Edu_Gr~p 110.7** 0.116 1072.7* 0.0814 (2.30) (1.05) (1.71) (1.00) 4.Edu_Gr~p 142.5** 0.105 2876.7*** 0.293*** (2.52) (0.89) (4.07) (3.28) 5.Edu_Gr~p 190.4*** 0.141 3366.5*** 0.322*** (2.78) (0.97) (3.96) (3.03) lnfainc 23.28*** 0.0320*** 228.2** 0.0240** (3.59) (2.66) (2.36) (2.05) chro 181.9*** 0.365*** 2440.6*** 0.322*** (14.06) (14.34) (15.57) (17.02) gh 476.6*** 0.894*** 6721.9*** 0.838*** (15.34) (15.48) (13.11) (15.78) pain 233.8*** 0.564*** 612.9 0.111* (6.53) (7.46) (1.14) (1.66) cesd 13.06*** 0.0277*** 62.72 0.00913* (4.70) (4.77) (1.64) (1.85) _cons -3413.0*** -6.176*** -65473.2*** -8.054*** (-14.89) (-17.47) (-17.67) (-22.85) --------------------------------------------------------------/ var..cos~) 2329803.9*** (15.65) var..tim~) 9.453*** (36.75) var..cos~) 307714041.5*** (17.28) var..tim~) 4.959*** (42.74) --------------------------------------------------------------N 29391 29391 29391 29391 r2_p 0.0173 0.0438 0.0252 0.0759 --------------------------------------------------------------

    tobit回想恶果输出到word文献,table3a_tobit.rtf:

    esttab m1 m2 m3 m4 using '$path/table/table3a_tobit.rtf',replace nogap compress  scalar(N r2_p) t star(* 0.1 ** 0.05 *** 0.01) mtitle('月门诊用度' '月门诊次数' '年入院用度' '年入院次数')
    5.4.2 应用负二项回想进行测度

    从恶果变量的描述性统计分析可知,恶果变量存在过渡分散的特征,即方差彰着大于盼望,尝试选拔零扩展负二项回想。(负二项回想一般用于因变量为计数型数据的模子,在咱们的案例中,破耗并非是计数型数据,在字据其溜达特征与计数型数据具有相似性,咱们将其行动计数型数据进行处理) stata的达成代码如下:'nbreg'是负二项回想的号令,'margins , dydx(*) post'用于测度平均旯旮效应。

    nbreg cost_clinic DID Post Treat Age Gender married i.Edu_Group lnfainc chro gh pain cesd , vce(cluster city) margins , dydx(*) postest store m1 nbreg time_clinic DID Post Treat Age Gender married i.Edu_Group lnfainc chro gh pain cesd , vce(cluster city) margins , dydx(*) postest store m2nbreg cost_hos DID Post Treat Age Gender married i.Edu_Group lnfainc chro gh pain cesd , vce(cluster city) margins , dydx(*) postest store m3nbreg time_hos DID Post Treat Age Gender married i.Edu_Group lnfainc chro gh pain cesd , vce(cluster city) margins , dydx(*) postest store m4esttab m1 m2 m3 m4 ,replace nogap compress scalar(N r2_p) t star(* 0.1 ** 0.05 *** 0.01) mtitle('cost_clinic' 'time_clinic' 'cost_hos' 'time_hos')

    咱们得到如下恶果:

    --------------------------------------------------------------                 (1)          (2)          (3)          (4)              cost_cl~c    time_cl~c     cost_hos     time_hos   --------------------------------------------------------------DID           -782.9***    -0.641***   -1844.4***   -0.0961***            (-19.55)     (-23.59)     (-11.79)     (-12.09)   Post           54.40***    0.0158        491.3***    0.0453***              (5.64)       (1.12)       (7.09)       (7.46)   Treat          239.8***   -0.0261       1529.1***     0.122***             (16.13)      (-1.31)      (14.72)      (21.38)   Age            0.473     0.000691        23.07***   0.00299***              (0.91)       (0.79)       (5.98)       (9.29)   Gender         6.967       0.0563***    -138.1**    -0.0105**               (0.80)       (4.20)      (-2.40)      (-2.03)   married       -7.281       0.0127        37.27      0.00383                (-0.51)       (0.71)       (0.42)       (0.55)   1.Edu_Gr~p         0            0            0            0                    (.)          (.)          (.)          (.)   2.Edu_Gr~p     27.14**     0.0469        136.7       0.0150**               (2.11)       (1.61)       (1.36)       (1.99)   3.Edu_Gr~p     30.26***    0.0228        72.88      0.00603                 (2.84)       (1.00)       (0.99)       (0.91)   4.Edu_Gr~p     52.53***   0.00729        286.5***    0.0278***              (3.94)       (0.31)       (2.85)       (3.41)   5.Edu_Gr~p     72.65***    0.0120        337.7***    0.0319***              (3.70)       (0.39)       (2.93)       (3.01)   lnfainc        5.826***   0.00591**      19.74      0.00221**               (2.86)       (2.29)       (1.62)       (2.13)   chro           34.99***    0.0703***     218.1***    0.0283***              (9.89)      (10.93)       (8.28)      (13.93)   gh             89.03***     0.186***     600.6***    0.0833***             (10.29)      (12.10)       (8.86)      (14.29)   pain           33.59***     0.123***     91.28       0.0103*                (4.21)       (7.48)       (1.16)       (1.73)   cesd           2.101***   0.00542***     11.02**   0.000891**               (2.92)       (4.61)       (2.01)       (1.97)   --------------------------------------------------------------N              29391        29391        29391        29391   r2_p                                                          --------------------------------------------------------------t statistics in parentheses* p<0.1, ** p<0.05, *** p<0.01

    字据负二项回想的恶果,在长护险计策实行后,实验组的门诊用度平均镌汰了-782.9元,去门诊的次数平均着落了0.641次,入院破耗平均镌汰了1844.4元,入院次数平均镌汰了-0.0961次,测度恶果在线性回想和tobit模子之间。

    5.4.3 将恶果变量进行对数化处理

    在这里只是提供一种想路,针对本次的案例分析,取对数其实并不行处置恶果变量的截尾溜达问题。因为4个恶果变量均在最低值0截尾,取对数也会导致变化后的数据在最低值0截尾。领先对恶果变量取对数,代码如下:

    foreach var in cost_clinic time_clinic cost_hos time_hos{ gen ln`var'=ln(`var'+1)}

    然后进行回想:

    reg lncost_clinic DID Post Treat Age Gender married i.Edu_Group lnfainc chro gh pain cesd  , vce(cluster city)est store m1 reg lntime_clinic DID Post Treat Age Gender married i.Edu_Group lnfainc chro gh pain cesd  , vce(cluster city)est store m2reg lncost_hos DID Post Treat Age Gender married i.Edu_Group lnfainc chro gh pain cesd  , vce(cluster city)est store m3reg lntime_hos DID Post Treat Age Gender married i.Edu_Group lnfainc chro gh pain cesd , vce(cluster city)est store m4esttab m1 m2 m3 m4 ,replace nogap compress r2 ar2 scalar(N ) t star(* 0.1 ** 0.05 *** 0.01) mtitle('月门诊用度' '月门诊次数' '年入院用度' '年入院次数')

    回想恶果如下:

    -------------------------------------------------------------- (1) (2) (3) (4) lncost_~c lntime_~c lncost_~s lntime_~s --------------------------------------------------------------DID -0.900*** -0.130*** -0.455*** -0.0527*** (-27.01) (-19.00) (-11.63) (-13.37) Post 0.135*** 0.00635 0.296*** 0.0281*** (4.38) (1.03) (8.76) (8.58) Treat 0.190*** 0.0103 0.901*** 0.0841*** (4.84) (1.22) (26.82) (26.13) Age -0.00292 -0.000353 0.0169*** 0.00169*** (-1.47) (-0.92) (7.74) (8.41) Gender 0.119*** 0.0220*** -0.0647* -0.00665** (4.22) (3.79) (-1.95) (-2.16) married 0.0456 0.00743 0.0287 0.00196 (1.10) (0.88) (0.55) (0.38) 1.Edu_Gr~p 0 0 0 0 (.) (.) (.) (.) 2.Edu_Gr~p 0.0465 0.0131 0.0954* 0.00909* (0.85) (1.03) (1.86) (1.89) 3.Edu_Gr~p 0.0861* 0.00839 0.0695 0.00518 (1.80) (0.78) (1.57) (1.20) 4.Edu_Gr~p 0.120** 0.00645 0.202*** 0.0177*** (2.23) (0.57) (4.04) (3.68) 5.Edu_Gr~p 0.164** 0.00822 0.230*** 0.0199*** (2.57) (0.62) (3.86) (3.42) lnfainc 0.0197*** 0.00252** 0.0146** 0.00124** (3.42) (2.32) (2.42) (2.27) chro 0.212*** 0.0384*** 0.231*** 0.0232*** (14.29) (12.37) (14.13) (14.41) gh 0.428*** 0.0777*** 0.460*** 0.0449*** (14.42) (12.99) (14.11) (14.38) pain 0.287*** 0.0616*** 0.0355 0.00526 (7.07) (7.42) (0.80) (1.26) cesd 0.0152*** 0.00319*** 0.00549* 0.000664** (5.12) (5.23) (1.80) (2.13) _cons -0.716*** -0.112*** -2.050*** -0.203*** (-4.21) (-3.54) (-10.05) (-10.72) --------------------------------------------------------------N 29391 29391 29391 29391 R-sq 0.071 0.070 0.060 0.065 adj. R-sq 0.071 0.070 0.059 0.065 --------------------------------------------------------------t statistics in parentheses* p<0.1, ** p<0.05, *** p<0.01参考文献

    [1] Villa, J. M. . (2016). Diff: simplifying the estimation of difference-in-differences treatment effects. Stata Journal, 16(1), págs. 52-71.

    [2] Greene, W. H. . (2018). Econometric analysis.Pearson Education India. 

    [3]马超,俞沁雯肛交 哭,宋泽 & 陈昊.(2019).始终护士保障、医疗用度驱散与价值医疗. 中国工业经济(12),42-59.

    本站仅提供存储就业,通盘内容均由用户发布,如发现存害或侵权内容,请点击举报。

    Powered by sss视频 @2013-2022 RSS地图 HTML地图

    Copyright © 2013-2024